FEB 18, 2021 8:21 AM PST

'Dancing' DNA is Caught on Video

WRITTEN BY: Carmen Leitch

For the first time, researchers have used high-resolution images to generate video footage of DNA as it 'dances' inside a cell, to illustrate the strain and stress that's placed on DNA as it gets compacted into cells. The images are unprecedented in detail, and show the molecule down to the double helix. The scientists added simulations to reveal the position and movement of each atom in the DNA as it twists. The work has been reported in Nature Communications.

A screenshot from the University of York video

There are two meters of DNA in almost every human cell, and it all has to fit inside of the nuclei of these cells. To pack it in, cellular machinery and proteins turn, coil, and loop the DNA molecule, producing twisty loops that are tightly wound and highly dynamic.

In this study, the researchers examined minicircles of DNA, since that's where the molecule gets joined at its two ends into a looped structure, using advanced atomic force microscopy. This allowed the scientists to twist the DNA minicircles even further with computer simulations, and this extra twist made the molecule dance more vigorously.

"The computer simulations and microscopy images agree so well that they boost the resolution of experiments and enable us to track how each atom of the double helix of DNA dances," said study co-author Dr. Agnes Noy, a lecturer in the Department of Physics at the University of York.

The relaxed molecules of DNA didn't do much. But once the scientists applied the extra twist the DNA began to take on very exotic shapes, and it became a lot more dynamic. The resulting 'dance' was found to be important for the DNA to bind to other molecules; the dynamic nature of the DNA allowed it to take on more shapes, giving it more options for biding partners.

“Seeing is believing, but with something as small as DNA, seeing the helical structure of the entire DNA molecule was extremely challenging," said study co-author Dr. Alice Pyne, a Lecturer in Polymers & Soft Matter at the University of Sheffield. "The videos we have developed enable us to observe DNA twisting in a level of detail that has never been seen before.”

Professor Lynn Zechiedrich, a study co-author from Baylor College of Medicine said, “Dr. Pyne and her co-worker’s new AFM structures of our supercoiled minicircles are extremely exciting because they show, with remarkable detail, how wrinkled, bubbled, kinked, denatured, and strangely shaped they are which we hope to be able to control someday.”

“The laws of physics apply just as well to the tiny looped DNA as to sub-atomic particles and galaxies. We can use supercomputers to understand the physics of twisted DNA. This should help researchers such as Professor Zechiedrich design bespoke minicircles for future therapies," noted study supervisor Dr. Sarah Harris, an Associate Professor in the School of Physics and Astronomy at the University of Leeds.

Previous work by scientists at Stanford has indicated that DNA minicircles could be related to aging and may be useful as disease markers.

Sources: University of York, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 23, 2020
Genetics & Genomics
Unusual Mutation Acts as a Kind of Gene Therapy
NOV 23, 2020
Unusual Mutation Acts as a Kind of Gene Therapy
Clinicians have identified a patient with a rare inherited disorder that disrupts the production of fresh blood cells, a ...
DEC 15, 2020
Plants & Animals
How an Insect Gained Its Wings
DEC 15, 2020
How an Insect Gained Its Wings
For decades, researchers have tried to understand how insect wings evolved. It seemed that none of the proposed explanat ...
JAN 08, 2021
Microbiology
Antibiotic Resistance Genes Can Come From Random DNA Sequences
JAN 08, 2021
Antibiotic Resistance Genes Can Come From Random DNA Sequences
Bacterial infections that can't be eliminated with standard drugs, caused by antibiotic-resistant bacteria, are consider ...
JAN 10, 2021
Microbiology
Some Bacteria Know the Time
JAN 10, 2021
Some Bacteria Know the Time
People, animals, and even plants are known to have biological clocks, and new work has revealed that free-living bacteri ...
FEB 10, 2021
Genetics & Genomics
The Evolution of Snake Venom From Predation to Protection
FEB 10, 2021
The Evolution of Snake Venom From Predation to Protection
The venom of some spitting snakes has evolved to cause more pain to mammals, a defense mechanism likely meant to fend of ...
FEB 11, 2021
Genetics & Genomics
We Have More in Common With Our Fish Ancestors Than We Knew
FEB 11, 2021
We Have More in Common With Our Fish Ancestors Than We Knew
Long ago, aquatic animals adapted to live on land, and this initial group of land-dwelling vertebrates are known as tetr ...
Loading Comments...